Answer:
K = 24.5 keV
Explanation:
The interference phenomenon is described by the equation
.d sin θ = m λ m = 1,2,3,…
The pattern is observed on a screen at a distance L = 2.6 m
tan θ = y / L
As these experiments the angle is very small we can approximate the tangent
tan θ = sin θ / cos θ
For small angles
tan θ = sin θ
Let's replace
d y / L = m λ
λ = d y / m L
Let's reduce the units to the SI system
d = 51 nm = 51 10⁻⁹ m
y = 0.4 mm = 0.4 10⁻³ m
Let's calculate the wavelength
Let's use m = 1 for the first interference line
λ = 51 10⁻⁹ 0.4 10⁻³ / 2.6
λ = 7.846 10⁻¹² m
Let's look for kinetic energy
K = ½ m v²
p = mv
K = ½ m p² / m
K = p² / 2m
Let's use the wave-particle duality relationship
p = h /λ
K = h² / 2m λ²
Let's calculate
K = (6.63 10⁻³⁴)² / (2 9.1 10⁻³¹ (7.846 10⁻¹²)²)
K = 3,923 10⁻¹⁵-15 J
K = 3.923 10⁻¹⁵ J ( 1 eV / 1.6 10⁻¹⁹ J) =2.452 10⁴ eV
K = 24.5 keV