A spin bike has a flywheel in two parts—a 12.5 kg disk with radius 0.23 m, and a 7.0 kg ring with mass concentrated at the outer edge of the disk. A friction pad exerts a force of 9.7 N on the outside of the disk. A cyclist is pedaling, spinning the disk at a typical 180 rpm. If she stops pedaling, how long will it take for the flywheel to come to a stop?

Respuesta :

Answer:

Explanation:

Given

mass of disk [tex]m=12.5 kg[/tex]

radius of disc [tex]R=0.23 m[/tex]

mass of ring [tex]m_r=7 kg[/tex]

Force [tex]F=9.7 N[/tex]

[tex]N=180 rpm[/tex]

[tex]\omega =\frac{2\pi N}{60}[/tex]

[tex]\omega =6\pi rad/s[/tex]

Total moment of inertia

=Moment of inertia of Disc +Moment of Inertia of ring

[tex]=0.5\cdot 12.5\times 0.23^2+7\times 0.23^2[/tex]

[tex]=13.25\times 0.23^2=0.7009 kg-m^2[/tex]

Now Torque is [tex]T=F\times R=I\cdot \alpha [/tex]

[tex]9.7\times 0.23=0.7\times \alpha [/tex]

[tex]\alpha =3.18 rad/s^2[/tex]

Now using [tex]\omega _f=\omega +\alpha t[/tex]

[tex]\omega _f=0[/tex] here

[tex]0=6\pi -3.18\times t[/tex]

[tex]t=\frac{6\pi }{3.18}[/tex]

[tex]t=5.92 s[/tex]                  

ACCESS MORE