Respuesta :
Answer:
y=9/4(x+16)(x+2)
Step-by-step explanation:
y=a(x-r)(x-s)
-16 & -2
y=a(x-(-16))(x-(-2))
y=a(x+16)(x+2)
Now we need to find a by plugging (-18, 72) into the equation.
72=a(-18+16)(-18+2)
72=a(-2)(-16)
72=a(32)
a=72/32
a=9/4
Finally, we get y=9/4(x+16)(x+2).
Equation of parabola is [tex]\boldsymbol{\frac{16}{x}+\frac{2}{y}=-1}[/tex]
Equation of parabola in intercept form that passes through [tex](x,y)=(-18,-72)[/tex] with [tex]\boldsymbol{x}-[/tex]intercept of [tex](-16,0)=(p,0),(-2,0)=(q,0)[/tex] is given as follows:
[tex]\boldsymbol{y=a(x-p)(x-q)}[/tex]
[tex]72=a(-18+16)(-18+2)[/tex]
[tex]72=a(-2)(-16)[/tex]
[tex]a=\frac{72}{-2(-16)}[/tex]
[tex]=\frac{9}{4}[/tex]
[tex]\boldsymbol{a=\frac{9}{4} }[/tex]
So,
[tex]72=\frac{9}{4} (x+16)(y+2)[/tex]
[tex]32=(x+16)(y+2)[/tex]
[tex]32=xy+2x+16y+32[/tex]
[tex]0=xy+2x+16y[/tex]
Divide both sides of this equation by [tex]\boldsymbol{xy}[/tex]
[tex]0=1+\frac{2}{y} +\frac{16}{x}[/tex]
[tex]\boldsymbol{\frac{16}{x}+\frac{2}{y}=-1}[/tex]
For more information on 'parabola':
https://brainly.com/question/4074088?referrer=searchResults