Write an equation of the parabola in intercept form that passes through 
(−18, 72) with x-intercepts of −16 and −2.

An equation of the parabola is y=

Respuesta :

Answer:

y=9/4(x+16)(x+2)

Step-by-step explanation:

y=a(x-r)(x-s)

-16 & -2

y=a(x-(-16))(x-(-2))

y=a(x+16)(x+2)

Now we need to find a by plugging (-18, 72) into the equation.

72=a(-18+16)(-18+2)

72=a(-2)(-16)

72=a(32)

a=72/32

a=9/4

Finally, we get y=9/4(x+16)(x+2).

Equation of parabola is [tex]\boldsymbol{\frac{16}{x}+\frac{2}{y}=-1}[/tex]

Equation of parabola in intercept form that passes through [tex](x,y)=(-18,-72)[/tex] with [tex]\boldsymbol{x}-[/tex]intercept of [tex](-16,0)=(p,0),(-2,0)=(q,0)[/tex] is given as follows:

[tex]\boldsymbol{y=a(x-p)(x-q)}[/tex]

[tex]72=a(-18+16)(-18+2)[/tex]

[tex]72=a(-2)(-16)[/tex]

 [tex]a=\frac{72}{-2(-16)}[/tex]

    [tex]=\frac{9}{4}[/tex]

[tex]\boldsymbol{a=\frac{9}{4} }[/tex]

So,

[tex]72=\frac{9}{4} (x+16)(y+2)[/tex]

[tex]32=(x+16)(y+2)[/tex]

[tex]32=xy+2x+16y+32[/tex]

 [tex]0=xy+2x+16y[/tex]

Divide both sides of this equation by [tex]\boldsymbol{xy}[/tex]

[tex]0=1+\frac{2}{y} +\frac{16}{x}[/tex]

[tex]\boldsymbol{\frac{16}{x}+\frac{2}{y}=-1}[/tex]

For more information on 'parabola':

https://brainly.com/question/4074088?referrer=searchResults

ACCESS MORE