Answer:
KE=1.366×10⁻¹⁶J or
KE=854ev
Explanation:
single slit diffraction pattern occur where sinФ=mλ/a for m=±1,±2,±3,.......
Here λ is wavelength
The spacing between successive minima is then
Δy=[tex]y_{m+1}-y_{m}[/tex]
Δy=λ(L/a)
as given Δy=2.10cm, L=25cm and a=0.500nm
so for λ
λ=Δy(a/L)
[tex]=(2.10*10^{-2}m )(\frac{(0.500*10^{-9}m)}{25*10^{-2}m} )[/tex]
λ=4.2×10⁻¹¹m
The momentum of one of these electrons is then
p=h/λ
[tex]p=\frac{6.63*10^{-34} }{4.2*10^{-11}}\\ p=1.578*10^{-23}kgm/s[/tex]
Assuming the electron is non-relativistic, its kinetic energy is
[tex]KE=p^{2}/2m_{e}\\ KE=\frac{(1.578*10^{-23} )^{2} }{2(9.11*10^{-31})}\\ KE=1.366*10^{-16}J[/tex]
Convert joules into electronvolt we get
KE=854ev