Respuesta :
Answer:
(A). The energy delivered to the tumor per second is [tex]8.88\times10^{-7}\ J[/tex].
(B). The absorbed dose delivered per second is [tex]1.6\times10^{-4}\ rad[/tex]
(C). The equivalent dose delivered per second is [tex]1.12\times10^{-4}\ rem[/tex]
(D). The exposure time is 18 days.
Explanation:
Given that,
Activity of the source [tex]A=2.4\times10^{-4}\ Ci[/tex]
[tex]1\ Ci =3.7\times10^{10}\ decay/s[/tex]
[tex]A=2.4\times10^{-4}\times3.7\times10^{10}[/tex]
[tex]A=8.880\times10^{6}\ decay/s[/tex]
Mass of tumor = 0.550 kg
Average energy = 1.25 MeV
Half the photons are absorbed in the tumor, and half escape
1 Gy =100 rad
(A). We need to calculate the energy delivered to the tumor per second
Using formula of energy delivered
[tex]E=\dfrac{1}{2}\times A\times E_{\gamma}[/tex]
Put the value into the formula
[tex]E=\dfrac{1}{2}\times8.880\times10^{6}\times1.25\times10^{6}\times1.6\times10^{-19}[/tex]
[tex]E=8.88\times10^{-7}\ J[/tex]
(B). We need to calculate the absorbed dose delivered per second
Using formula of absorbed dose
[tex]absorbed\ dose=\dfrac{E}{m}[/tex]
Put the value into the formula
[tex]absorbed\ dose=\dfrac{8.88\times10^{-7}}{0.550}[/tex]
[tex]absorbed\ dose=16.14\times10^{-7}\ J/kg[/tex]
[tex]absorbed\ dose=1.6\times10^{-4}\ rad[/tex]
(C). If the RBE for these γ rays is 0.70
We need to calculate the equivalent dose delivered per second
Using formula of the equivalent dose
[tex]equivalent\ dose=RBE\times \gamma[/tex]
Put the value into the formula
[tex]equivalent\ dose=0.70\times1.6\times10^{-4}[/tex]
[tex]equivalent\dose=1.12\times10^{-4}\ rem[/tex]
(D). We need to calculate the exposure time for required for an equivalent dose of 180 rem
Using formula of exposure time
[tex]exposure\ time=\dfrac{180}{1.12\times10^{-4}}[/tex]
[tex]exposure\ time=1.6\times10^{6}\ sec[/tex]
[tex]exposure\ time=18\ days[/tex]
Hence, (A). The energy delivered to the tumor per second is [tex]8.88\times10^{-7}\ J[/tex].
(B). The absorbed dose delivered per second is [tex]1.6\times10^{-4}\ rad[/tex]
(C). The equivalent dose delivered per second is [tex]1.12\times10^{-4}\ rem[/tex]
(D). The exposure time is 18 days.