Respuesta :
Answer:
[tex]R_{\alpha}=2R_p[/tex]
Explanation:
Let [tex]m_p\ and\ m_{\alpha }[/tex] are the mass of proton and the alpha particles. Let [tex]R_p\ and\ R_{\alpha}[/tex] are the radius of proton and the alpha particles. Given that the alpha particle has four times the mass of the proton and twice its charge.
[tex]m_\alpha =4m_p[/tex]
and
[tex]q_\alpha =2q_p[/tex]
The centripetal force is balanced by the magnetic force as :
[tex]qvB=\dfrac{mv^2}{R}[/tex]
[tex]R=\dfrac{mv}{qB}[/tex]
For proton,
[tex]R_p=\dfrac{m_pv}{q_pB}[/tex]
For alpha particle,
[tex]R_{\alpha}=\dfrac{m_{\alpha}v}{q_{\alpha} B}[/tex]
[tex]R_{\alpha}=\dfrac{4m_pv}{2q_pB}[/tex]
[tex]R_{\alpha}=2\dfrac{m_pv}{q_pB}[/tex]
[tex]R_{\alpha}=2R_p[/tex]
So, the relation between [tex]R_p\ and\ R_{\alpha}[/tex] is :
Option (d) : [tex]R_{\alpha}=2R_p[/tex]
The relation Ra and Rp will be "Ra = 2 Rp".
Magnetic field:
Let,
- Mass of proton and alpha particles = [tex]m_p[/tex] and [tex]m_\alpha[/tex]
- Radius of proton and alpha particles = [tex]R_p[/tex] and [tex]R_{\alpha}[/tex]
According to the question,
[tex]m_\alpha = 4 m_p[/tex], and
[tex]q_\alpha = 2 q_p[/tex]
The centripetal force balanced by magnetic force:
→ [tex]qvB = \frac{mv^2}{R}[/tex]
→ [tex]R = \frac{mv}{qB}[/tex]
For Proton,
→ [tex]R_p = \frac{m_pv}{q_p B}[/tex]
For Alpha,
→ [tex]R_\alpha = \frac{m_\alpha v}{q_\alpha B}[/tex]
[tex]= \frac{4 m_p v}{2 q_p B}[/tex]
[tex]= 2 P_p[/tex]
Thus the above answer i.e., "Option d" is correct.
Find out more information about magnetic field here:
https://brainly.com/question/14411049