Respuesta :

Answer:

[tex]$ \frac{38}{61} + \frac{70}{61}i $[/tex]

Step-by-step explanation:

Given: [tex]$ \frac{10 + 2i}{5 - 6i} $[/tex]

We multiply both the numerator and denominator by the complex conjugate of the denominator.

We have:

[tex]$ \frac{10 + 2i}{5 - 6i} = \frac{10 + 2i}{5 - 6i} \times \frac{5 + 6i}{5 + 6i} $[/tex]

This equals [tex]$ \frac{(10 - 2i)(5 - 6i)}{(5 - 6i)(5 + 6i)} $[/tex]

Note that the denominator is of the form, [tex]$ (a + ib)(a - ib) $[/tex].

This is equal to [tex]$ a^2 + b^2 $[/tex].

Multiplying the numerator term - wise and applying the above formula for denominator, we have:

[tex]$ \frac{(10 + 2i)(5 + 6i)}{5^2 + 6^2} $[/tex]

[tex]$ \frac{50 + 60i + 10i - 12}{61} $[/tex]

[tex]$ = \frac{38 + 70i}{61} $[/tex]

[tex]$ \frac{38}{61} + \frac{70}{61}i $[/tex] is the required answer.

ACCESS MORE