Answer:
The value of a is 7.4833. The value of [tex]A=29.9262^0[/tex] and [tex]B=60.0735^0[/tex].
Step-by-step explanation:
Consider the provided information.
The required figure is shown below:
We need to find the value of a.
Calculate the value of a by using Pythagorean theorem.
[tex]a^2+b^2=c^2[/tex]
[tex]a^2+(13)^2=(15)^2[/tex]
[tex]a^2=225-169[/tex]
[tex]a^2=56[/tex]
[tex]a=7.4833[/tex]
Hence, the value of a is 7.4833.
Now find the value of angle A as shown:
[tex]\sin A=\frac{a}{c}[/tex]
[tex]\sin A=\frac{7.4833}{15}[/tex]
[tex]A=sin^{-1}(0.4989)[/tex]
[tex]A=29.9262^0[/tex]
Find the value of angle B as shown:
[tex]\sin B=\frac{b}{c}[/tex]
[tex]\sin B=\frac{13}{15}[/tex]
[tex]B=sin^{-1}(0.8667)[/tex]
[tex]B=60.0735^0[/tex]
Hence, the value of [tex]A=29.9262^0[/tex] and [tex]B=60.0735^0[/tex].