Answer:
Part 1) Option A. [tex]m\angle a=35^o[/tex]
Part 2) Option B. [tex]m\angle b=50^o[/tex]
Step-by-step explanation:
we know that
An isosceles triangle has two equal sides and two equal angles
Part 1) what is the measure of ∠a?
we know that
[tex]m\angle b=m\angle c[/tex] ----> equation A
Remember that the sum of the interior angles of triangle is equal to 180 degrees
we have
[tex]m\angle b+m\angle c+2m\angle a=180^o[/tex] ----> equation B
substitute equation A in equation B
[tex]m\angle c+m\angle c+2m\angle a=180^o[/tex]
[tex]2m\angle c+2m\angle a=180^o[/tex]
Divide by 2 both sides
[tex]m\angle c+m\angle a=90^o[/tex]
we have
[tex]m\angle c=55^o[/tex] ---> given problem
substitute
[tex]55^o+m\angle a=90^o[/tex]
[tex]m\angle a=90^o-55^o=35^o[/tex]
Part b) we have that
we have
[tex]2m\angle a=80^o[/tex] ---> given problem
[tex]m\angle b=m\angle c[/tex] ---> equation A
Remember that the sum of the interior angles of triangle is equal to 180 degrees
we have
[tex]m\angle b+m\angle c+2m\angle a=180^o[/tex] ----> equation B
substitute equation A in equation B
[tex]m\angle b+m\angle b+2m\angle a=180^o[/tex]
[tex]2m\angle b+2m\angle a=180^o[/tex]
we have
[tex]2m\angle a=80^o[/tex]
substitute
[tex]2m\angle b+80^o=180^o[/tex]
[tex]2m\angle b=180^o-80^o[/tex]
[tex]2m\angle b=100^o[/tex]
[tex]m\angle b=50^o[/tex]