Answer:
Explanation:
Using the Condition That Initial Angular Velocity is equal to final angular velocity
total angular momentum is equal to angular momentum of the person + angular Momentum of the Platform[tex]L_{T} = L_{plat} + L_{per}[/tex]
Note L= I ×ω
Final Angular momentum of the person is equal to the final angular momentum of the platform
Final Moment of Inertia of the person I_{per.f} =[tex]mr^{2}[/tex] =70×(2.7)²=510.3Kgm2
Initial Angular Momentum L_{i} = Final Angular Momentum L_{f}
I_{plat.i} ×ω_{plat.i} + I_{per.i} ×ω_{per.i} = I_{plat.f} ×ω_{plat.f} + I_{per.f} ×ω_{per.f}
890(0.85) + 0 =890(ω_{plat.f}) +510.3(ω_{plat.f})
756.5 = 1400.3 (ω_{plat.f})
(ω_{plat.f}) =0.54rad/s