Answer:
[tex]t=5.176\ s[/tex]
Explanation:
power rating of the coffee pot, [tex]P=750\ W[/tex]
volume of water to be boiled, [tex]V=0.85\ L\ \Rightarrow mass,\ m=0.85\ kg[/tex]
initial temperature of water, [tex]T_{i}=15^{\circ}C[/tex]
mass of aluminium in the pot, [tex]m_a=0.36\ kg[/tex]
specific heat of aluminium, [tex]c_a=900\ J.kg^{-1}.K^{-1}[/tex]
specific heat of water, [tex]c_w=4186\ J.kg^{-1}.K^{-1}[/tex]
Considering that the water and aluminium are always at the same temperature.
Now the heat required to bring the water in the pot to 100°C:
[tex]Q=(m_a.c_a+m.c_w)\Delta T[/tex]
[tex]Q=0.36\times 900+0.85\times 4186[/tex]
[tex]Q=3882.1\ J[/tex]
Therefore time required to boil the water:
[tex]t=\frac{Q}{P}[/tex]
[tex]t=\frac{3882.1}{750}[/tex]
[tex]t=5.176\ s[/tex]