Answer: (143.07, 158.93)
Step-by-step explanation:
The formula to find the confidence interval is given by :-
[tex]\overline{x}\pm z^*\dfrac{\sigma}{\sqrt{n}}[/tex]
where n= sample size
[tex]\overline{x}[/tex] = Sample mean
z* = critical z-value (two tailed).
[tex]\sigma[/tex] = Population standard deviation
We assume that the underlying population distribution is normal.
As per given , we have
n= 108
[tex]\overline{x}=151[/tex]
[tex]\sigma=32[/tex]
Critical value for 99% confidence level = 2.576 (By using z-table)
Then , the 99% confidence interval for the population mean hours spent watching television per month :-
[tex]151\pm (2.576)\dfrac{32}{\sqrt{108}}[/tex]
[tex]151\pm (2.576)\dfrac{32}{10.3923048454}[/tex]
[tex]151\pm (2.576)(3.07920143568)[/tex]
[tex]151\pm (7.93202289831)\approx151\pm7.93\\\\=(151-7.93,\ 151+7.93)\\\\=(143.07,\ 158.93 )[/tex]
Hence, the required 99% confidence interval for the population mean hours spent watching television per month. = (143.07, 158.93)