The total number of relative maximum and minimum points of the function whose derivative is f ' (x) = x2(x + 1)3(x – 4)3 is (A) 0 (B) 1 (C) 2 (D) 3 (E) 4 ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 12. Find all absolute and relative

Respuesta :

Answer:

(D) 3

Step-by-step explanation:

A function f(x) has a relative minimum and maximum when its derivative f'(x) is equal to zero. Given f'(x) = x^2*(x + 1)^3*(x – 4)^3, f'(x) = 0 at x = 0, x = -1 and x = 4. Therefore, the total number of relative maximum and minimum points of f(x) is 3.

ACCESS MORE