Answer:
Explanation:
Given
Force [tex]F(x)=2x+x^3[/tex]
Change in Potential Energy from x=1 to x=2 m is given by
[tex]\Delta U=\int F(x)dx[/tex]
[tex]\Delta U=\int_{1}^{2}F(x)dx[/tex]
[tex]\Delta U=\int_{1}^{2}(2x+x^3)dx[/tex]
[tex]\Delta U=|x^2+\frac{x^4}{4}|_1^{2}[/tex]
[tex]\Delta U=6.75 J[/tex]
(b)Change in Kinetic Energy
If the Force is conservative in nature then the total change in mechanical energy is zero thus
Thus [tex]\Delta K.E.=U_1-U_2=-\Delta U=-6.75 J[/tex]