Answer:
Option A) (33.813,42.787)
Step-by-step explanation:
We are given the following data set:
39, 42, 47, 45, 32, 45, 37, 34, 33, 29
Sample size, n = 10
Formula:
[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}[/tex]
where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.
[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]
[tex]Mean =\displaystyle\frac{383}{10} = 38.3[/tex]
Sum of squares of differences = 354.1
[tex]S.D = \sqrt{\frac{354.1}{9}} = 6.27[/tex]
95% Confidence interval:
[tex]\bar{x} \pm t_{critical}\displaystyle\frac{s}{\sqrt{n}}[/tex]
Putting the values, we get,
[tex]t_{critical}\text{ at degree of freedom 9 and}~\alpha_{0.05} = \pm 2.26[/tex]
[tex]38.3 \pm 2.262(\frac{6.27}{\sqrt{10}} ) = 38.3\pm 4.484= (33.813,42.787)[/tex]