Respuesta :
Answer:
The number of coins each are 120 dimes, 80 nickels and 300 quarters. And the coins worth dimes →$12, nickels →$4 and quarters →$75.
Step-by-step explanation:
Given:
For every two nickels there are three dimes. For every two dimes There are 5 Quarters. There are 500 coins total.
Now, to find the number of nickels, dimes and quarters. And the coins worth.
Let the number of dimes be [tex]x[/tex].
The the number of nickels be [tex]y[/tex].
And the number of quarters be [tex]z[/tex].
So, the number of total coins are:
[tex]x+y+z=500[/tex].........(1)
Now, as per given in question:
[tex]\frac{y}{2} =\frac{x}{3}[/tex]
On solving we get:
[tex]y=\frac{2x}{3}[/tex].........(2)
[tex]\frac{x}{2} =\frac{z}{5}[/tex]
On solving we get:
[tex]\frac{5x}{2} =z[/tex].........(3)
Now, in equation(1) substituting the equation (2) and(3) in the place of [tex]y\ and\ z[/tex] we get:
[tex]x+\frac{2x}{3} +\frac{5x}{2}=500[/tex]
On solving the equation we get:
[tex]\frac{6x+4x+15x}{6}=500[/tex]
[tex]\frac{25x}{6} =500[/tex]
Multiplying both sides by 6 we get:
[tex]25x=3000[/tex]
Dividing both sides by 25 we get:
[tex]x=120.[/tex]
Number of dimes = 120.
Putting the value of [tex]x[/tex] in equation 2 we get:
[tex]y=\frac{2\times 120}{3}[/tex]
On solving we get:
[tex]y=80.[/tex]
The number of nickels = 80.
Now, putting the value of [tex]x[/tex] and [tex]y[/tex] in equation 1 we get:
[tex]120+80+z=500[/tex]
[tex]200+z=500[/tex]
On solving we get:
[tex]z=300[/tex]
The number of quarters = 300.
Now, the coins worth:
[tex]Dimes = \$0.10 \times 120=\$12.[/tex]
[tex]Nickels = \$0.05 \times 80=\$4.[/tex]
[tex]Quarters =\$0.25 \times 300=\$75.[/tex]
Therefore, the number of coins each are 120 dimes, 80 nickels and 300 quarters. And the coins worth dimes →$12, nickels →$4 and quarters →$75.