Respuesta :
Answer:
(a) 0.26 % (b) 0.80 %
Explanation:
(a)
Given that:
[tex]K_{a}=7.6\times 10^{-7}[/tex]
Concentration = 0.10 M
Considering the ICE table for the dissociation of acid as:-
[tex]\begin{matrix}&HA&\rightleftharpoons &A^-&&H^+\\ At\ time, t = 0 &0.10&&0&&0\\At\ time, t=t_{eq}&-x&&+x&&+x\\ ----------------&-----&-&-----&-&-----\\Concentration\ at\ equilibrium:-&0.10-x&&x&&x\end{matrix}[/tex]
The expression for dissociation constant of acid is:
[tex]K_{a}=\frac {\left [ H^{+} \right ]\left [ {A}^- \right ]}{[HA]}[/tex]
[tex]7.2\times 10^{-7}=\frac{x^2}{0.10-x}[/tex]
[tex]7.2\left(0.10-x\right)=10000000x^2[/tex]
Solving for x, we get:
x = 0.00026 M
Percentage ionization = [tex]\frac{0.00026}{0.10}\times 100=0.26 \%[/tex]
(b)
Concentration = 0.010 M
Considering the ICE table for the dissociation of acid as:-
[tex]\begin{matrix}&HA&\rightleftharpoons &A^-&&H^+\\ At\ time, t = 0 &0.010&&0&&0\\At\ time, t=t_{eq}&-x&&+x&&+x\\ ----------------&-----&-&-----&-&-----\\Concentration\ at\ equilibrium:-&0.010-x&&x&&x\end{matrix}[/tex]
The expression for dissociation constant of acid is:
[tex]K_{a}=\frac {\left [ H^{+} \right ]\left [ {A}^- \right ]}{[HA]}[/tex]
[tex]7.2\times 10^{-7}=\frac{x^2}{0.010-x}[/tex]
[tex]7.2\left(0.010-x\right)=10000000x^2[/tex]
Solving for x, we get:
x = 0.00008 M
Percentage ionization = [tex]\frac{0.00008}{0.010}\times 100=0.80 \%[/tex]