Answer: a) 984 b) 1068
Step-by-step explanation:
When the prior estimate of the population proportion(p) is available .
Then the formula to find the sample size :-
[tex]n=p(1-p)(\dfrac{z^*}{E})^2[/tex]
, where E = margin of error
and z* = Critical z-value .
a) p= 0.36
E= 0.03
Critical value for 95% confidence level = z*= 1.96
Required sample size=[tex]n= 0.36(1-0.36)(\dfrac{1.960}{0.03})^2[/tex]
[tex]n= 0.36(0.64)(65.3333333333)^2[/tex]
[tex]n=(0.2304)(4268.44444444)=983.4496\approx984[/tex]
Hence, the required sample size is 984.
b) When the prior estimate of the population proportion is unavailable .
Then we use formula to find the sample size :-
[tex]n= 0.25(\dfrac{z^*}{E})^2[/tex]
, where E = margin of error
and z* = Critical z-value
Put E= 0.03 and z*= 1.960
Required sample size =[tex]n= 0.25(\dfrac{1.960}{0.03})^2[/tex]
[tex]n= 0.25(65.3333333333)^2[/tex]
[tex]n= 0.25(4268.44444444)=1067.11111111\approx1068[/tex]
Hence, the required sample size is 1068.