Respuesta :
An arithmetic sequence is one in which consecutive terms differ by some fixed number. Recursively, such a sequence is given by
[tex]\begin{cases}a_1=a_1\\a_n=a_{n-1}+d&\text{for }n>1\end{cases}[/tex]
where [tex]d[/tex] is the common difference between terms.
Using this definition, you can express any term [tex]a_n[/tex] of the sequence in terms of [tex]a_1[/tex], since
[tex]a_n=a_{n-1}+d[/tex]
[tex]a_n=(a_{n-2}+d)+d=a_{n-2}+2d[/tex]
[tex]a_n=(a_{n-3}+d)+2d=a_{n-3}+3d[/tex]
and so on down to the explicit rule,
[tex]a_n=a_1+(n-1)d[/tex]
The sum of the first [tex]k[/tex] terms, [tex]S_k[/tex], of such a sequence is
[tex]\displaystyle S_k=\sum_{n=1}^ka_n=a_1+a_2+\cdots+a_{k-1}+a_k[/tex]
or, using the explicit rule,
[tex]\displaystyle S_k=\sum_{n=1}^k(a_1+(n-1)d)=\sum_{n=1}^k(a_1-d)+d\sum_{n=1}^kn[/tex]
[tex]\implies\displaystyle S_k=k(a_1-d)+\frac{dk(k+1)}2=\frac{k(2a_1+(k-1)d)}2[/tex]
Now, given [tex]a_7=5[/tex] and [tex]S_{16}=20[/tex], we have
[tex]a_7=a_1+6d\implies a_1+6d=5[/tex]
[tex]S_{16}=\dfrac{16(2a_1+15d)}2\implies 16a_1+120d=20[/tex]
which you can solve to get
[tex]\boxed{a_1=20,d=-\dfrac52}[/tex]