To solve this problem it is necessary to apply the concept related to continuity equations and fluid pressure changes.
[tex]A_1v_1 = A_2v_2[/tex]
Where
[tex]A_{1,2}[/tex] = Cross-sectional Area at each section
[tex]v_{1,2}[/tex]= Velocity at each section
Rearranging to find the value of the velocity at section 2 is
[tex]v_2 = \frac{A_1}{A_2}v_1[/tex]
[tex]v_2 = \frac{\pi/4 d^2_1}{\pi/4 d^2_2}v_1[/tex]
[tex]v_2 = (\frac{d_1}{d_2})^2 v_1[/tex]
[tex]v_2 = (\frac{0.98}{0.75})^2 (10)[/tex]
[tex]v_2 = 17.0734cm/s[/tex]
The velocity at the end is 17.07cm/s
Finally the pressure change can be expressed as:
[tex]P_1 +\frac{1}{2}\rho v_1^2 = P_2 +\frac{1}{2} \rho v_2^2[/tex]
[tex]P_1-P_2 = \frac{1}{2} \rho (v_2^2-v_1^2)[/tex]
Replacing we have,
[tex]\Delta P = \frac{1}{2} (1060) ((0.1707)^2-(0.10)^2)[/tex]
[tex]\Delta P = 10.14Pa[/tex]
Therefore the total change at pressure is 10.14Pa