Answer:
D.[tex]\frac{4}{36}[/tex]
Step-by-step explanation:
Solution,
Two dice are thrown.
So we have to find out the total number of outcomes.
[tex](1,1),\ (1,2),\ (1,3),\ (1,4),\ (1,5),\ (1,6)[/tex]
[tex](2,1),\ (2,2),\ (2,3),\ (2,4),\ (2,5),\ (2,6)[/tex]
[tex](3,1),\ (3,2),\ (3,3),\ (3,4),\ (3,5),\ (3,6)[/tex]
[tex](4,1),\ (4,2),\ (4,3),\ (4,4),\ (4,5),\ (4,6)[/tex]
[tex](5,1),\ (5,2),\ (5,3),\ (5,4),\ (5,5),\ (5,6)[/tex]
[tex](6,1),\ (6,2),\ (6,3),\ (6,4),\ (6,5),\ (6,6)[/tex]
The total number of outcomes = [tex]36[/tex]
We have to find out the probability of outcomes that add up to 9.
So, Possible outcomes are;
[tex](3,6),\ (4,5),\ (5,4),\ (6,3)[/tex]
The total number of possible outcomes = [tex]4[/tex]
Now, according to the formula of probability,
[tex]P(E)=\frac{Total\ number\ of\ Possible\ outcomes}{Total\ Number\ of\ outcomes}[/tex]
[tex]P(of\ add\ up\ to\ 9)=\frac{4}{36}[/tex]
Hence the correct option is D)4/36.