Answer:
[tex]8.93\times 10^2[/tex] years
Explanation:
Given that:
Half life = 5730 years
[tex]t_{1/2}=\frac {ln\ 2}{k}[/tex]
Where, k is rate constant
So,
[tex]k=\frac {ln\ 2}{t_{1/2}}[/tex]
[tex]k=\frac{ln\ 2}{5730}\ years^{-1}[/tex]
The rate constant, k = 0.00012 years⁻¹
Initial concentration [A₀] = 59 Bq
Final concentration [tex][A_t][/tex] = 53 Bq
Time = ?
Using integrated rate law for first order kinetics as:
[tex][A_t]=[A_0]e^{-kt}[/tex]
Applying values, we get that:-
[tex]53=59\times e^{-0.00012\times t}[/tex]
[tex]\ln \left(e^{-0.00012t}\right)=\ln \left(\frac{53}{59}\right)[/tex]
[tex]t=-\frac{\ln \left(\frac{53}{59}\right)}{0.00012}[/tex]
t = [tex]8.93\times 10^2[/tex] years
[tex]8.93\times 10^2[/tex] years is the age of the artifact.