$ 159,744.59 will be in the account after 20 years.
Answer: Option A
Step-by-step explanation:
Need to find out the amount present in the account after 20 years. The formula to find out the future value is,
[tex]\text {Future value}=p \times\left(\frac{\left(1+\frac{r}{n}\right)^{n t}-1}{\frac{r}{n}}\right)[/tex]
Here
p : amount deposit monthly =$500
r : rate of interest = [tex]\frac{2.75}{100}[/tex] = 0.0275
n : 12(compound monthly)
t : time =20
By substituting all the given datas in the above equation, we get
[tex]\text { Future value }=500 \times\left(\frac{\left(1+\frac{0.0275}{12}\right)^{240}-1}{\frac{0.0275}{12}}\right)[/tex]
[tex]\text {Future value}=500 \times\left(\frac{(1+0.002291)^{240}-1}{0.002291}\right)=500 \times\left(\frac{(1.732)-1}{0.002291}\right)[/tex]
[tex]\text { Future value }=500 \times\left(\frac{0.732}{0.002291}\right)=500 \times 319.511=\$ 159,744.99[/tex]