Respuesta :

Answer: The second table

Step-by-step explanation:

For the table to show  proportional relationship between x and y , then they must have a common ratio. that is x/y must be the same throughout

Table 1

[tex]x_{1}[/tex] = 1                [tex]y_{1}[/tex] = 2

[tex]x_{2}[/tex] = 3               [tex]y_{2}[/tex] = 5

[tex]x_{3}[/tex] = 4               [tex]y_{3}[/tex] = 8

[tex]x_{4}[/tex] = 7               [tex]y_{4}[/tex] = 14

[tex]\frac{x_{1}}{y_{1}}[/tex] = 1/2

[tex]\frac{x_{2}}{y_{2}}[/tex] = 3/5

[tex]\frac{x_{3}}{y_{3}}[/tex] = 4/8 = 1/2

[tex]\frac{x_{4}}{y_{4}}[/tex]= 7/14 = 1/2

Since the ratio is not the same throughout , then x and y are not proportional

Table 2

[tex]x_{1}[/tex] = 7               [tex]y_{1}[/tex] = 1

[tex]x_{2}[/tex] = 14               [tex]y_{2}[/tex] = 2

[tex]x_{3}[/tex] = 28               [tex]y_{3}[/tex] = 4

[tex]x_{4}[/tex] = 35              [tex]y_{4}[/tex] = 5

[tex]\frac{x_{1}}{y_{1}}[/tex] = 7/1 = 7

[tex]\frac{x_{2}}{y_{2}}[/tex] = 14/2 = 7

[tex]\frac{x_{3}}{y_{3}}[/tex] = 28/4 = 7

[tex]\frac{x_{4}}{y_{4}}[/tex]= 35/5 = 7

Since the ratio is the same throughout , it means that x and y are proportional.

Doing the same for table 3 and 4 , x and y are not proportional

ACCESS MORE