Answer:
[tex]1.91738\times 10^{-20}\ kgm/s[/tex]
[tex]1.05456\times 10^{-24}\ kgm/s[/tex]
Explanation:
h = Planck's constant = [tex]6.626\times 10^{-34}\ m^2kg/s[/tex]
[tex]\Delta x[/tex] = Uncertainty in the position
[tex]\Delta p[/tex] = Uncertainty in the momentum
From the uncertainty principle
[tex]\Delta x\Delta p=\dfrac{h}{2\pi}\\\Rightarrow \Delta p=\dfrac{h}{2\pi \Delta x}\\\Rightarrow \Delta p=\dfrac{h}{2\pi \Delta x}\\\Rightarrow \Delta p=\dfrac{6.626\times 10^{-34}}{2\pi\times 5.5\times 10^{-15}}\\\Rightarrow \Delta p=1.91738\times 10^{-20}\ kgm/s[/tex]
The minimum uncertainty in the momentum of the proton is [tex]1.91738\times 10^{-20}\ kgm/s[/tex]
[tex]\Delta x\Delta p=\dfrac{h}{2\pi}\\\Rightarrow \Delta p=\dfrac{h}{2\pi \Delta x}\\\Rightarrow \Delta p=\dfrac{h}{2\pi \Delta x}\\\Rightarrow \Delta p=\dfrac{6.626\times 10^{-34}}{2\pi\times 1\times 10^{-10}}\\\Rightarrow \Delta p=1.05456\times 10^{-24}\ kgm/s[/tex]
The minimum uncertainty in the momentum of the electron is [tex]1.05456\times 10^{-24}\ kgm/s[/tex]