Solve for x in the equation 2 x squared + 3 x minus 7 = x squared + 5 x + 39.
x = negative 6 plus-or-minus StartRoot 82 EndRoot
x = negative 6 plus-or-minus 2 StartRoot 17 EndRoot
x = 1 plus-or-minus StartRoot 33 EndRoot
x = 1 plus-or-minus StartRoot 47 EndRoot

Respuesta :

Answer:

[tex]\implies x=1\pm \sqrt{47}[/tex]

Step-by-step explanation:

We want to solve for x in [tex]2x^2+3x-7=x^2+5x+39[/tex]

You need to group and combine like terms and write in standard form:

[tex]2x^2-x^2+3x-5x-7-39=0[/tex]

[tex]\imples x^2-2x-46=0[/tex]

By comparing to [tex]ax^2+bx+c=0[/tex], we a=1,b=-2 and c=-46

The solution can be obtained using the quadratic formula.

[tex]x=\frac{-b\pm \sqrt{b^2-4ac} }{2a}[/tex]

We substitute the coefficients to get:

[tex]x=\frac{--2\pm \sqrt{(-2)^2-4*1*-46} }{2*1}[/tex]

[tex]x=\frac{2\pm \sqrt{4+4*46} }{2}[/tex]

[tex]x=\frac{2\pm \sqrt{4*47} }{2}[/tex]

[tex]x=\frac{2\pm2\sqrt{47} }{2}[/tex]

[tex]\implies x=1\pm \sqrt{47}[/tex]

The last choice is correct

Answer:

\implies x=1\pm \sqrt{47}

Step-by-step explanation:

ACCESS MORE