Respuesta :
Answer:
Approximately [tex]\rm 6.1 \times 10^{-22}\; rad \cdot s^{-2}[/tex].
Explanation:
Angular acceleration is equal to [tex]\displaystyle \frac{\text{Change in angular speed}}{\text{Time taken}}[/tex].
Apparently, for this question, the time taken is [tex]100\; \text{years} \approx 100 \times 365.24\times 24 \times 3600 \; \text{seconds}[/tex]. The challenge is to find the change in angular speed over that period of time.
Let the time (in seconds) it took to complete [tex]365[/tex] revolutions be [tex]t[/tex] in the year 1906. In 2006 that number would be [tex](t + 0.840)[/tex].
Each revolution is [tex]2\pi[/tex] radians. [tex]365[/tex] revolutions will be an angular displacement of [tex]365 \times 2\pi[/tex] in radians. Angular speed is equal to [tex]\displaystyle \frac{\text{Angular Displacement}}{\text{Time Taken}}[/tex].
The average angular speed in 1906 could thus be written as [tex]\displaystyle \frac{365\times 2\pi}{t}[/tex].
Similarly, the average angular speed in 2006 could be written as [tex]\displaystyle \frac{365\times 2\pi}{t + 0.840}[/tex].
The difference between the two will be equal to:
[tex]\begin{aligned} & \; \Delta \omega \cr = &\; \frac{365\times 2\pi}{t} - \frac{365\times 2\pi}{t + 0.840}\cr =& \; 365 \times 2\pi \times \left.\frac{(t + 0.840) - t}{t(t + 0.840)}\right. \cr =& \;365 \times 2\pi \times \left.\frac{0.840}{t(t + 0.840)}\end{aligned}[/tex].
Since the value of [tex]t[/tex] (about the same as the number of seconds in 365 days) is much bigger than [tex]0.840\; \rm s[/tex], apply the approximation [tex]t + 0.840 \approx t[/tex].
[tex]\begin{aligned} &\;365 \times 2\pi \times \left.\frac{0.840}{t(t + 0.840)} \cr \approx &\; 365 \times 2\pi \times \left.\frac{0.840}{t^2} \cr \approx & \; 365 \times 2\pi \times\frac{0.840}{(365 \times 24 \times 3600)^2} \cr \approx &\; 1.9370\times 10^{-12}\; \rm rad \cdot s^{-1}\end{aligned}[/tex].
And that's approximately the average change in angular velocity over a period of 100 years. Apply the formula for average angular acceleration:
[tex]\displaystyle \dfrac{\Delta \omega}{\Delta t} = \rm \dfrac{1.9370\times 10^{-12}\; rad \cdot s^{-1}}{100 \times 365.24 \times 24 \times 3600\; s} \approx 6.1\times 10^{-22}\; rad \cdot s^{-2}[/tex].