Answer: -2.5
Step-by-step explanation:
Formula to calculate the t-test statistic (or t-value) for a test is given by :-
[tex]t=\dfrac{\overline{x}-\mu}{\dfrac{s}{\sqrt{n}}}[/tex]
where , n= sample size
[tex]\overline{x}[/tex] = sample mean
[tex]\mu[/tex] = Population mean
s= sample standard deviation.
As per given we have,
[tex]\mu= 4.8[/tex]
[tex]\overline{x}=4.1[/tex]
s= 1.4
n= 25
Then, t-value will be
[tex]t=\dfrac{4.1-4.8}{\dfrac{1.4}{\sqrt{25}}}[/tex] (Substitute the values )
[tex]\Rightarrow\ t=\dfrac{-0.7}{\dfrac{1.4}{5}}[/tex]
[tex]\Rightarrow\ t=\dfrac{-0.7}{0.28}[/tex]
[tex]\Rightarrow\ t=\dfrac{-70}{28}=\dfrac{-5}{2}=-2.5[/tex]
Hence, the observed t value for this problem is t= -2.5