Answer:
K = 0.0450, T > 1501 K
Explanation:
We may apply the Gibbs free energy equation relating the Gibbs free energy to an equilibrium constant of a reaction. The relationship is described by the following equation:
[tex]\Delta G^o = -RT ln(K)[/tex]
Rearrange the equation for the equilibrium constant:
[tex]ln(K) = -\frac{\Delta G^o}{RT}\therefore K = e^{-\frac{\Delta G^o}{RT}}[/tex]
Given the temperature [tex]T = 1280 K[/tex] and the ideal gas law constant [tex]R = 8.314 \frac{J}{K mol}[/tex], we obtain:
[tex]K = e^{-\frac{33\cdot 10^3 J}{8.314 \frac{J}{K mol}\cdot 1280 K}} = 0.0450[/tex]
Now notice if [tex]K > 1[/tex], then [tex]ln(K) > 1[/tex] and [tex]\Delta G^o < 0[/tex].
We may firstly solve for the entropy change of this reaction using the following equation:
[tex]\Delta G^o = \Delta H^o - T\Delta S^o \therefore \Delta S^o = \frac{\Delta H^o - \Delta G^o}{T} = \frac{224\cdot 10^3 J - 33\cdot 10^3 J}{1280 K} = 149.2 \frac{J}{K}[/tex]
Using the same equation, solve when the change in the Gibbs free energy is negative:
[tex]\Delta H^o - T\Delta S^o < 0\therefore T > \frac{\Delta H^o}{\Delta S^o} = \frac{224\cdot 10^3 J}{149.2 \frac{J}{K}} = 1501 K[/tex]