The first five terms of a sequence are 7,10, 13 , 16 and 19. which of the following functions define this sequence for all integers n>or equal to 1?
A. f[n]= 3n=7
B.f[n]= 4+3n
C. f[n]= 4[3]^n-1
D.f[n]=7[3]^n-1
Answer:
Option B is correct.
[tex]f(n)=4+3n[/tex]
Step-by-step explanation:
Given:
The given sequence of an AP is.
7,10,13,16,19......
The first term of an AP [tex]a=7[/tex]
And common difference [tex]d=10-7=3[/tex]
The function which defined this sequence is;
[tex]f(n)=a_{n}=a+(n-1)d[/tex]
Now we substitute a and d value in above equation.
[tex]f(n)=7+(n-1)3[/tex]
[tex]f(n)=7+3n-3[/tex]
[tex]f(n)=4+3n[/tex]
therefore, the function for the given sequence for all integers [tex]n\geq 1[/tex] 1 is; [tex]f(n)=4+3n[/tex]