To solve this problem, it is necessary to apply the definitions and concepts related to Newton's second law, which relate the variables of the Normal Force, Weight, friction force and finally the Torque.
We start under the definition that the Normal Force of one of the 4 tires of the car would be subject to
[tex]N = \frac{mg}{4}[/tex]
Where,
m = mass
g = Gravitational Acceleration
Therefore the Normal Force of each wheel would be
[tex]N = \frac{920*9.8}{4}[/tex]
[tex]N = 2254N[/tex]
Now the friction force can be determined as
[tex]f_s = \mu_s N[/tex]
[tex]f_s = 0.60 * 2254[/tex]
[tex]f_s = 1352.4N[/tex]
The radius of each of the tires is given as
[tex]r = \frac{69}{2}[/tex]
[tex]r = 34.5cm = 0.345m[/tex]
Finally, the torque is made between the friction force (which is to be overcome) and the radius of each of the wheels, therefore:
[tex]\tau = r*f_s[/tex]
[tex]\tau = (0.345)(1352.4)[/tex]
[tex]\tau = 466.578N\cdot m[/tex]
Therefore the engine of the car must apply a torque of about [tex]466.578N\cdot m[/tex] to lay rubber