Respuesta :
Answer with explanation:
When the sample size is small (< 30) and the population standard deviation is unknown , then we use t-test.
The confidence interval for population mean will be :
[tex]\overline{x}\pm t^*\dfrac{s}{\sqrt{n}}[/tex] (1)
, where [tex]\overline{x}[/tex] = sample mean
t* = Critical value (based on degree of freedom and significance level).
s= sample standard deviation
n= sample size.
As per given we have
n= 9
Degree of freedom = n-1 = 8
[tex]\overline{x}=2.4[/tex]
s= 0.75
Significance level =[tex]\alpha=1-0.80=0.20[/tex]
Using students' t distribution table ,
Critical value : [tex]t^*=t_{\alpha/2,df}=t_{0.10,8}=1.3304[/tex]
We assume that the population is approximately normal.
Then, a 80% confidence interval for the mean waste recycled per person per day for the population of Florida will be :
[tex]2.4\pm (1.3304)\dfrac{0.75}{\sqrt{8}}[/tex] (Substitute the values in (1))
[tex]2.4\pm (1.3304)\dfrac{0.75}{2.82842712475}[/tex]
[tex]2.4\pm (1.3304)(0.265165042945)[/tex]
[tex]2.4\pm 0.352775573134\approx2.4\pm0.353=(2.4-0.353,\ 2.4+0.353)=(2.047,\ 2.753)[/tex]
Hence, the 80% confidence interval for the mean waste recycled per person per day for the population of Florida. = (2.047, 2.753)