Answer:
Therefore,
[tex]BC=a=10\ units\\\\AC=b=13.66\ units[/tex]
Step-by-step explanation:
Consider a Δ ABC with
m∠ A = 45°
m∠ C = 30°
AB = c = 5√2
To Find:
BC = a = ?
AC = c = ?
Solution:
Triangle sum property:
In a Triangle sum of the measures of all the angles of a triangle is 180°.
[tex]\angle A+\angle B+\angle C=180\\\\45+30+\angle B=180\\\ttherefore m\angle B =180-75=105\°[/tex]
We know in a Triangle Sine Rule Says that,
In Δ ABC,
[tex]\frac{a}{\sin A}= \frac{b}{\sin B}= \frac{c}{\sin C}[/tex]
substituting the given values we get
[tex]\frac{a}{\sin 45}= \frac{b}{\sin 105}= \frac{5\sqrt{2} }{\sin 30}[/tex]
∴ [tex]\frac{a}{\sin 45}= \frac{5\sqrt{2} }{\sin 30}\\\\a=\sin 45\times \frac{5\sqrt{2} }{\sin 30}\\\\a=\frac{1}{\sqrt{2} }\times \frac{5\sqrt{2} }{0.5} \\\\\\a=\frac{5}{0.5} =10\\\therefore BC = a = 10\ units[/tex]
Similarly for 'b',
[tex]\frac{b}{\sin 105}= \frac{5\sqrt{2} }{\sin 30}\\\frac{b}{0.9659}= \frac{5\sqrt{2} }{0.5}\\\\b=0.9659\times \frac{5\sqrt{2} }{0.5}\\\\b=\frac{6.8301}{0.5} \\\\b=13.66\\\therefore AC = b =13.66\ units\\[/tex]
Therefore,
[tex]BC=a=10\ units\\\\AC=b=13.66\ units[/tex]