Answer:
a) [tex]\frac{1}{22}[/tex]
b) [tex]\frac{7}{22}[/tex]
c) [tex]\frac{5}{11}[/tex]
d) [tex]\frac{35}{66}[/tex]
Step-by-step explanation:
Given,
Number of blue socks = 4,
Grey socks = 5,
Black socks = 3,
Total socks = 4 + 5 + 3 = 12,
Ways of choosing any 2 socks = [tex]^{12}C_2[/tex]
[tex]=\frac{12!}{2!10!}[/tex]
[tex]=\frac{12\times 11}{2}[/tex]
[tex]=6\times 11[/tex]
= 66,
a) Ways of choosing 2 blue socks = [tex]^3C_2[/tex]
= 3,
Since, [tex]\text{Probability}=\frac{\text{Favorable outcomes}}{\text{Total outcomes}}[/tex]
Thus, the probability of selecting 2 blue socks = [tex]\frac{3}{66}=\frac{1}{22}[/tex]
b) Ways of choosing 2 shocks, non of them are grey socks = [tex]^7C_2[/tex]
[tex]=\frac{7!}{2!5!}[/tex]
[tex]=7\times 3[/tex]
[tex]=21[/tex]
Thus, the probability of selecting no grey socks = [tex]\frac{21}{66}[/tex]
[tex]=\frac{7}{22}[/tex]
c) ways of selecting atleast 1 black sock = ways of selecting 1 black sock + ways of selecting 2 black socks
[tex]=^3C_1\times ^9C_1+^3C_2[/tex]
[tex]=3\times 9 + 3[/tex]
[tex]=27 + 3[/tex]
= 30,
Thus, the probability of selecting at least 1 black sock = [tex]\frac{30}{66}[/tex]
[tex]=\frac{5}{11}[/tex]
d) Ways of selecting a green sock = [tex]^5C_1\times ^7C_1[/tex]
= 35,
Thus, the probability of selecting a green sock = [tex]\frac{35}{66}[/tex]