37. Socks. In your sock drawer you have 4 blue socks, 5 grey socks, and 3 black ones. Half asleep one morning, you grab 2 socks at random and put them on. Find the probability you end up wearing a) 2 blue socks. b) no grey socks. c) at least 1 black sock. d) a green sock.

Respuesta :

Answer:

a) [tex]\frac{1}{22}[/tex]

b) [tex]\frac{7}{22}[/tex]

c) [tex]\frac{5}{11}[/tex]

d) [tex]\frac{35}{66}[/tex]

Step-by-step explanation:

Given,

Number of blue socks = 4,

Grey socks = 5,

Black socks = 3,

Total socks = 4 + 5 + 3 = 12,

Ways of choosing any 2 socks = [tex]^{12}C_2[/tex]

[tex]=\frac{12!}{2!10!}[/tex]

[tex]=\frac{12\times 11}{2}[/tex]

[tex]=6\times 11[/tex]

= 66,

a) Ways of choosing 2 blue socks = [tex]^3C_2[/tex]

= 3,

Since, [tex]\text{Probability}=\frac{\text{Favorable outcomes}}{\text{Total outcomes}}[/tex]

Thus, the probability of selecting 2 blue socks = [tex]\frac{3}{66}=\frac{1}{22}[/tex]

b) Ways of choosing 2 shocks, non of them are grey socks = [tex]^7C_2[/tex]

[tex]=\frac{7!}{2!5!}[/tex]

[tex]=7\times 3[/tex]

[tex]=21[/tex]

Thus, the probability of selecting no grey socks = [tex]\frac{21}{66}[/tex]

[tex]=\frac{7}{22}[/tex]

c) ways of selecting atleast 1 black sock = ways of selecting 1 black sock + ways of selecting 2 black socks

[tex]=^3C_1\times ^9C_1+^3C_2[/tex]

[tex]=3\times 9 + 3[/tex]

[tex]=27 + 3[/tex]

= 30,

Thus, the probability of selecting at least 1 black sock = [tex]\frac{30}{66}[/tex]

[tex]=\frac{5}{11}[/tex]

d) Ways of selecting a green sock = [tex]^5C_1\times ^7C_1[/tex]

= 35,

Thus, the probability of selecting a green sock = [tex]\frac{35}{66}[/tex]

ACCESS MORE