Respuesta :
Answer:
Explanation:
Given
mass of squirrel [tex]m=560 gm[/tex]
Surface area of squirrel [tex]A=930 cm^2[/tex]
and the area which face [tex]A_f=\frac{A}{2}=465 cm^2[/tex]
height of tree [tex]h=5 m[/tex]
Coefficient of drag [tex]C=1[/tex]
drag Force [tex]F_d=\frac{1}{2}C\cdot \rho \cdot A\cdot v^2[/tex]
Terminal velocity is given
[tex]F_d=mg[/tex]
[tex]\frac{1}{2}C\cdot \rho \cdot A\cdot v^2=mg[/tex]
[tex]v=\sqrt{\frac{2\times m\times g}{\rho \times C\times A_f}}[/tex]
[tex]v=\sqrt{\frac{2\times 0.560\times 9.8}{1.2\times 1\times 465\times 10^{-4}}}[/tex]
[tex]v=13.9 m/s[/tex]
(b)Mass of person [tex]m=56 kg[/tex]
[tex]v^2-u^2=2gh[/tex]
[tex]u=0[/tex]
[tex]v=\sqrt{2gh}[/tex]
[tex]v=\sqrt{2\times 9.8\times 5}[/tex]
[tex]v=9.89 m/s[/tex]
Answer:
(a). The terminal velocity is 9.83 m/s.
(b). The velocity is 9.9 m/s.
Explanation:
Given that,
Mass of squirrel = 560 g
Surface area = 930 cm²
Height = 5.0 m
Weight of person = 56 kg
We need to calculate the terminal velocity
Using formula of terminal velocity
[tex]v_{t}=\sqrt{\dfrac{2mg}{\rho A C_{d}}}[/tex]
Where, A = area
[tex]\rho[/tex] = density
[tex]C_{d}[/tex] = drag coefficient
m = mass
Put the value into the formula
[tex]v_{t}=\sqrt{\dfrac{2\times0.560\times9.8}{1.22\times0.093\times1}}[/tex]
[tex]v_{t}=9.83\ m/s[/tex]
The terminal velocity is 9.83 m/s.
We need to calculate the velocity
Using equation of motion
[tex]v^2=u^2+2gs[/tex]
Put the value into the formula
[tex]v=\sqrt{2\times 9.8\times5}[/tex]
[tex]v=9.9\ m/s[/tex]
Hence, (a). The terminal velocity is 9.83 m/s.
(b). The velocity is 9.9 m/s.