81. A 560-g squirrel with a surface area of 930cm2 falls from a 5.0-m tree to the ground. Estimate its terminal velocity. (Use a drag coefficient for a horizontal skydiver.) What will be the velocity of a 56-kg person hitting the ground, assuming no drag contribution in such a short distance?

Respuesta :

Answer:

Explanation:

Given

mass of squirrel [tex]m=560 gm[/tex]

Surface area of squirrel [tex]A=930 cm^2[/tex]

and the area which face [tex]A_f=\frac{A}{2}=465 cm^2[/tex]

height of tree [tex]h=5 m[/tex]

Coefficient of drag [tex]C=1[/tex]

drag Force [tex]F_d=\frac{1}{2}C\cdot \rho \cdot A\cdot v^2[/tex]

Terminal velocity is given

[tex]F_d=mg[/tex]

[tex]\frac{1}{2}C\cdot \rho \cdot A\cdot v^2=mg[/tex]

[tex]v=\sqrt{\frac{2\times m\times g}{\rho \times C\times A_f}}[/tex]

[tex]v=\sqrt{\frac{2\times 0.560\times 9.8}{1.2\times 1\times 465\times 10^{-4}}}[/tex]

[tex]v=13.9 m/s[/tex]

(b)Mass of person [tex]m=56 kg[/tex]

[tex]v^2-u^2=2gh[/tex]

[tex]u=0[/tex]

[tex]v=\sqrt{2gh}[/tex]

[tex]v=\sqrt{2\times 9.8\times 5}[/tex]

[tex]v=9.89 m/s[/tex]

Answer:

(a). The terminal velocity is 9.83 m/s.

(b). The velocity is 9.9 m/s.

Explanation:

Given that,

Mass of squirrel = 560 g

Surface area = 930 cm²

Height = 5.0 m

Weight of person = 56 kg

We need to calculate the terminal velocity

Using formula of terminal velocity

[tex]v_{t}=\sqrt{\dfrac{2mg}{\rho A C_{d}}}[/tex]

Where, A = area

[tex]\rho[/tex] = density

[tex]C_{d}[/tex] = drag coefficient

m = mass

Put the value into the formula

[tex]v_{t}=\sqrt{\dfrac{2\times0.560\times9.8}{1.22\times0.093\times1}}[/tex]

[tex]v_{t}=9.83\ m/s[/tex]

The terminal velocity is 9.83 m/s.

We need to calculate the velocity

Using equation of motion

[tex]v^2=u^2+2gs[/tex]

Put the value into the formula

[tex]v=\sqrt{2\times 9.8\times5}[/tex]

[tex]v=9.9\ m/s[/tex]

Hence, (a). The terminal velocity is 9.83 m/s.

(b). The velocity is 9.9 m/s.

ACCESS MORE