Respuesta :

Answer:

[tex]f^{-1}(x)=\frac{x}{6}+\frac{2}{3}[/tex]

Step-by-step explanation:

Given function.

[tex]f(x)=6x-4[/tex]

To find the inverse function [tex]f^{-1}(x)[/tex]

Step 1:

Replace [tex]f(x)[/tex] with[tex]y[/tex] in the function.

[tex]y=6x-4[/tex]

Step 2:

Interchange [tex]y[/tex] with [tex]x[/tex] in the equation.

[tex]x=6y-4[/tex]

Step 3:

Solve for [tex]y[/tex].

We have [tex]x=6y-4[/tex]

Adding 4 to both sides,

[tex]x+4=6y-4+4[/tex]

[tex]x+4=6y[/tex]

Dividing each term by 6 to isolate [tex]y[/tex]

[tex]\frac{x}{6}+\frac{4}{6}=\frac{6y}{6}[/tex]

[tex]\frac{x}{6}+\frac{4}{6}=y[/tex]

Simplifying fractions by dividing the numerator and denominator by  their GCF.

[tex]\frac{x}{6}+\frac{4\div 2}{6\div 2}=y[/tex]

[tex]\frac{x}{6}+\frac{2}{3}=y[/tex]

Thus the equation of [tex]y[/tex] is:

[tex]y=\frac{x}{6}+\frac{2}{3}[/tex]

Step 4:

Replace [tex]y[/tex] with [tex]f^{-1}(x)[/tex]

[tex]f^{-1}(x)=\frac{x}{6}+\frac{2}{3}[/tex] (Answer)

Thus, we have the inverse function

ACCESS MORE