Respuesta :

Answer:

[tex](f\circ g)(x)=\frac{1}{x^{2}}+\frac{8}{x}+12[/tex]

Step-by-step explanation:

Given that [tex]f (x) = x^{2}+6x+5[/tex] and [tex]g(x)=\frac{1}{x}+1[/tex] are the functions.

To find [tex](f\circ g)(x)[/tex] with the given two functions. ie., to find the composite function of f(x) and g(x) which is denoted by [tex](f\circ g)(x)[/tex]

[tex](f\circ g)(x)=f(g(x))[/tex]

                 [tex]=f(\frac{1}{x}+1)[/tex]

                  [tex]=({\frac{1}{x}+1})^{2}+6\times ({\frac{1}{x}+1})+5[/tex]

                   [tex] =\frac{1}{x^{2}}+\frac{2}{x}+1+\frac{6}{x}+6+5[/tex]

                     [tex]=\frac{1}{x^{2}}+\frac{8}{x}+12[/tex]

Therefore [tex](f\circ g)(x)=\frac{1}{x^{2}}+\frac{8}{x}+12[/tex]

Therefore the composite function of f(x) and g(x) is  [tex](f\circ g)(x)=\frac{1}{x^{2}}+\frac{8}{x}+12[/tex]

ACCESS MORE