Which polynomial is equal to (-3x^2 + 2x - 3) subtracted from (x^3 - x^2 + 3x)?
The polynomial equal to (-3x^2 + 2x - 3) subtracted from (x^3 - x^2 + 3x) is [tex]x^3 + 2x^2 + x + 3[/tex]
Given that two polynomials are: [tex](-3x^2 + 2x - 3)[/tex] and [tex](x^3 - x^2 + 3x)[/tex]
We have to find the result when [tex](-3x^2 + 2x - 3)[/tex] is subtracted from [tex](x^3 - x^2 + 3x)[/tex]
In basic arithmetic operations,
when "a" is subtracted from "b" , the result is b - a
Similarly,
When [tex](-3x^2 + 2x - 3)[/tex] is subtracted from [tex](x^3 - x^2 + 3x)[/tex] , the result is:
[tex]\rightarrow (x^3 - x^2 + 3x) - (-3x^2 + 2x - 3)[/tex]
Let us solve the above expression
There are two simple rules to remember:
So the above expression becomes:
[tex]\rightarrow (x^3 - x^2 + 3x) + 3x^2 -2x + 3[/tex]
Removing the brackets we get,
[tex]\rightarrow x^3 - x^2 + 3x + 3x^2 -2x + 3[/tex]
Combining the like terms,
[tex]\rightarrow x^3 -x^2 + 3x^2 + 3x - 2x + 3[/tex]
[tex]\rightarrow x^3 + 2x^2 + x + 3[/tex]
Thus the resulting polynomial is found