3. Which polynomial is equal to
(-3x2 + 2x - 3) subtracted from
(x3 - x² + 3x)?

A 2x² + 2x² + x -
B-2x² + 2x² + x + 3
C x² + 2x² +
x3
Dx² + 2? + x + 3
X

Respuesta :

Which polynomial is equal to  (-3x^2 + 2x - 3) subtracted from  (x^3 - x^2 + 3x)?

Answer:

The polynomial equal to (-3x^2 + 2x - 3) subtracted from  (x^3 - x^2 + 3x) is [tex]x^3 + 2x^2 + x + 3[/tex]

Solution:

Given that two polynomials are: [tex](-3x^2 + 2x - 3)[/tex] and [tex](x^3 - x^2 + 3x)[/tex]

We have to find the result when [tex](-3x^2 + 2x - 3)[/tex] is subtracted from  [tex](x^3 - x^2 + 3x)[/tex]

In basic arithmetic operations,

when "a" is subtracted from "b" , the result is b - a

Similarly,

When [tex](-3x^2 + 2x - 3)[/tex] is subtracted from  [tex](x^3 - x^2 + 3x)[/tex] , the result is:

[tex]\rightarrow (x^3 - x^2 + 3x) - (-3x^2 + 2x - 3)[/tex]

Let us solve the above expression

There are two simple rules to remember:

  • When you multiply a negative number by a positive number then the product is always negative.
  • When you multiply two negative numbers or two positive numbers then the product is always positive.

So the above expression becomes:

[tex]\rightarrow (x^3 - x^2 + 3x) + 3x^2 -2x + 3[/tex]

Removing the brackets we get,

[tex]\rightarrow x^3 - x^2 + 3x + 3x^2 -2x + 3[/tex]

Combining the like terms,

[tex]\rightarrow x^3 -x^2 + 3x^2 + 3x - 2x + 3[/tex]

[tex]\rightarrow x^3 + 2x^2 + x + 3[/tex]

Thus the resulting polynomial is found

ACCESS MORE