Answer:
a) [tex]t=2.6\ s[/tex]
b) [tex]s=43.7747\ m[/tex]
Explanation:
Given:
length of inclined roof, [tex]l=54\ m[/tex]
inclination of roof below horizontal, [tex]\theta=17^{\circ}C[/tex]
acceleration of hammer on the roof, [tex]a_r=2.87\ m.s^{-2}[/tex]
height from the lower edge of the roof, [tex]h=46.5\ m[/tex]
Now, we find the final velocity when leaving the edge of the roof:
Using the equation of motion:
[tex]v^2=u^2+2.a_r.l[/tex]
[tex]v^2=0^2+2\times 2.87\times 54[/tex]
[tex]v=17.6057\ m.s^{-1}[/tex]
The direction of this velocity is 17° below the horizontal.
∴Vertical component of velocity:
[tex]v_y=v.sin\ \theta[/tex]
[tex]v_y=17.6057\times sin\ 17^{\circ}[/tex]
[tex]v_y=5.1474\ m.s^{-1}[/tex]
a.
So, the time taken to fall on the ground:
[tex]h=ut+\frac{1}{2} g.t^2[/tex]
here:
initial velocity, [tex]u=v_y=5.1474\ m.s^{-1}[/tex]
putting respective values
[tex]46.5=5.1474\times t+0.5\times 9.8\times t^2[/tex]
[tex]t=2.6\ s[/tex]
b.
Horizontal component of velocity, [tex]v_x=v.cos\ \theta=17.6057\ cos\ 17^{\circ}=16.8364\ m.s^{-1}[/tex]
Since there is no air resistance so the horizontal velocity component remains constant.
∴Horizontal distance from the edge of the roof where the hammer falls is given by:
[tex]s=v_x.t[/tex]
[tex]s=16.8364\times 2.6[/tex]
[tex]s=43.7747\ m[/tex]