Respuesta :
Answer:
a. [tex]4 C_3H_5N_3O_9 (l)\rightarrow 6N_2 (g) + O_2 (g) + 10 H_2O (g) + 12 CO_2 (g)[/tex]
b. 146.0 g
Explanation:
Question 1 (a). Just as the problem states, liquid nitroglycerin decomposes into nitrogen gas [tex]N_2[/tex], oxygen gas [tex]O_2[/tex], water vapor [tex]H_2O[/tex] and carbon dioxide [tex]CO_2[/tex]. Let's write the decomposition of nitroglycerin into these 4 components:
[tex]C_3H_5N_3O_9 (l)\rightarrow N_2 (g) + O_2 (g) + H_2O (g) + CO_2 (g)[/tex]
Now we need to balance the equation. Firstly, notice we have 3 carbon atoms on the left and 1 on the right, so let's multiply carbon dioxide by 3:
[tex]C_3H_5N_3O_9 (l)\rightarrow N_2 (g) + O_2 (g) + H_2O (g) + 3 CO_2 (g)[/tex]
Now, we have 3 nitrogen atoms on the left and 2 on the right, so let's multiply nitrogen on the right by [tex]\frac{3}{2}[/tex]:
[tex]C_3H_5N_3O_9 (l)\rightarrow \frac{3}{2}N_2 (g) + O_2 (g) + H_2O (g) + 3 CO_2 (g)[/tex]
We have 5 hydrogen atoms on the left, 2 on the right, so let's multiply the right-hand side by [tex]\frac{5}{2}[/tex]:
[tex]C_3H_5N_3O_9 (l)\rightarrow \frac{3}{2}N_2 (g) + O_2 (g) + \frac{5}{2} H_2O (g) + 3 CO_2 (g)[/tex]
Finally, count the oxygen atoms. We have a total of 9 on the left. On the right we have (excluding oxygen molecule):
[tex]\frac{5}{2} + 6 = 8.5[/tex]
This leaves [tex]9 - 8.5 = 0.5 = \frac{1}{2}[/tex] of oxygen. Since oxygen is diatomic, we need to take one fourth of it to get one half in total:
[tex]C_3H_5N_3O_9 (l)\rightarrow \frac{3}{2}N_2 (g) + \frac{1}{4} O_2 (g) + \frac{5}{2} H_2O (g) + 3 CO_2 (g)[/tex]
To make it look neater without fractional coefficients, multiply both sides by 4:
[tex]4 C_3H_5N_3O_9 (l)\rightarrow 6N_2 (g) + O_2 (g) + 10 H_2O (g) + 12 CO_2 (g)[/tex]
Question 2 (b). Now we can make use of the balanced chemical equation and apply it for the context of this separate problem. We're given the following variables:
[tex]V_{CO_2} = 41.0 L[/tex]
[tex]T = -14.0^oC + 273.15 K = 259.15 K[/tex]
[tex]p = 1 atm[/tex]
Firstly, we may find moles of carbon dioxide produced using the ideal gas law [tex]pV = nRT[/tex].
Rearranging for moles, that is, dividing both sides by RT (here R is the ideal gas law constant):
[tex]n_{CO_2} = \frac{pV_{CO_2}}{RT} = \frac{1 atm\cdot 41.0 L}{0.08206 \frac{L atm}{mol K}\cdot 259.15 K} = 1.928 mol[/tex]
According to the stoichiometry of the balanced chemical equation:
[tex]4 C_3H_5N_3O_9 (l)\rightarrow 6N_2 (g) + O_2 (g) + 10 H_2O (g) + 12 CO_2 (g)[/tex]
4 moles of nitroglycerin (ng) produce 12 moles of carbon dioxide. From here we can find moles o nitroglycerin knowing that:
[tex]\frac{n_{ng}}{4} = \frac{n_{CO_2}}{12} \therefore n_{ng} = \frac{4}{12}n_{CO_2} = \frac{1}{3}\cdot 1.928 mol = 0.6427 mol[/tex]
Multiplying the number of moles of nitroglycerin by its molar mass will yield the mass of nitroglycerin decomposed:
[tex]m_{ng} = n_{ng}\cdot M_{ng} = 0.6427 mol\cdot 227.09 g/mol = 146.0 g[/tex]