Respuesta :
Answer:
The original duration of the tour = 20 days
Step-by-step explanation:
Solution:
Total expenses for the tour = $360
Let the original tour duration be for [tex]x[/tex] days.
So, for [tex]x[/tex] days the total expense = $360
Thus the daily expense in dollars can be given by = [tex]\frac{360}{x}[/tex]
Tour extension and effect on daily expenses.
The tour is extended by 4 days.
Tour duration now = [tex](x+4)[/tex] days
On extension, his daily expense is cut by $3
New daily expense in dollars = [tex](\frac{360}{x}-3)[/tex]
Total expense in dollars can now be given as: [tex](x+4)(\frac{360}{x}-3)[/tex]
Simplifying by using distribution (FOIL).
[tex](x.\frac{360}{x})+(x(-3)+(4.\frac{360}{x})+(4(-3))[/tex]
[tex]360-3x+\frac{1440}{x}-12[/tex]
[tex]348-3x+\frac{1440}{x}[/tex]
We know total expense remains the same which is = $360.
So, we have the equation as:
[tex]348-3x+\frac{1440}{x}=360[/tex]
Multiplying each term with [tex]x[/tex] to remove fractions.
[tex]348x-3x^2+1440=360x[/tex]
Subtracting [tex]348x[/tex] both sides
[tex]348x-348x-3x^2+1440=360x-348x[/tex]
[tex]-3x^2+1440=12x[/tex]
Dividing each term with -3.
[tex]\frac{-3x^2}{-3}+\frac{1440}{-3}=\frac{12x}{-3}[/tex]
[tex]x^2-480=-4x[/tex]
Adding [tex]4x[/tex] both sides.
[tex]x^2+4x-480=-4x+4x[/tex]
[tex]x^2+4x-480=0[/tex]
Solving using quadratic formula.
For a quadratic equation: [tex]ax^2+bx+c=0[/tex]
[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
Plugging in values from the equation we got.
[tex]x=\frac{-4\pm\sqrt{(4)^2-4(1)(-480)}}{2(1)}[/tex]
[tex]x=\frac{-4\pm\sqrt{16+1920}}{2}[/tex]
[tex]x=\frac{-4\pm\sqrt{1936}}{2}[/tex]
[tex]x=\frac{-4\pm44}{2}[/tex]
So, we have
[tex]x=\frac{-4+44}{2}[/tex] and [tex]x=\frac{-4-44}{2}[/tex]
[tex]x=\frac{40}{2}[/tex] and [tex]x=\frac{-48}{2}[/tex]
∴ [tex]x=20[/tex] and [tex]x=-24[/tex]
Since number of days cannot be negative, so we take [tex]x=20[/tex] as the solution for the equation.
Thus, the original duration of the tour = 20 days