Answer:
35 revolutions
Explanation:
t = Time taken
[tex]\omega_f[/tex] = Final angular velocity
[tex]\omega_i[/tex] = Initial angular velocity
[tex]\alpha[/tex] = Angular acceleration
[tex]\theta[/tex] = Number of rotation
Equation of rotational motion
[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow \alpha=\frac{\omega_f-\omega_i}{t}\\\Rightarrow \alpha=\frac{3-0}{10.7}\\\Rightarrow \alpha=0.28037\ rev/s^2[/tex]
[tex]\omega_f^2-\omega_i^2=2\alpha \theta\\\Rightarrow \theta=\frac{\omega_f^2-\omega_i^2}{2\alpha}\\\Rightarrow \theta=\frac{3.1^2-0^2}{2\times 0.28037}\\\Rightarrow \theta=17.13806\ rev[/tex]
Number of revolutions in the 10.7 seconds is 17.13806
[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow \alpha=\frac{\omega_f-\omega_i}{t}\\\Rightarrow \alpha=\frac{0-3.1}{11.2}\\\Rightarrow a=-0.27678\ rev/s^2[/tex]
[tex]\omega_f^2-\omega_i^2=2\alpha \theta\\\Rightarrow \theta=\frac{\omega_f^2-\omega_i^2}{2\alpha}\\\Rightarrow \theta=\frac{0^2-3.1^2}{2\times -0.27678}\\\Rightarrow \theta=17.36035\ rev[/tex]
Number of revolutions in the 11.2 seconds is 17.36035
Total total number of revolutions in the 21.9 second interval is 17.13806+17.36035 = 34.49841 = 35 revolutions