Answer:
Co-ordinates of endpoint is (-24,-17)
Step-by-step explanation:
The question should be given as :
Find the coordinates of the other endpoint of the segment, given its midpoint (-19,-18) and one endpoint (-14,-19).
Step-by-step explanation:
Given point:
Endpoint (-14,-19)
Mid-point of segment (-19,-18)
Let endpoint have co-ordinates [tex](x_2,y_2)[/tex]
Using midpoint formula:
[tex]M=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]
Where [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are co-ordinates of the endpoint of the segment.
Plugging in values to find the midpoint of segment.
[tex]M=(\frac{-14+x_2}{2},\frac{-19+y_2}{2})[/tex]
We know [tex]M(-19,-18)[/tex]
So, we have
[tex](-19,-18)=(\frac{-14+x_2}{2},\frac{-19+y_2}{2})[/tex]
Solving for [tex]x_2[/tex]
[tex]\frac{-14+x_2}{2}=-19[/tex]
Multiplying both sides by 2.
[tex]\frac{-14+x_2}{2}\times 2=-19\times 2[/tex]
[tex]-14+x_2=-38[/tex]
Adding both sides by 14.
[tex]-14+x_2+14=-38+14[/tex]
∴ [tex]x_2=-24[/tex]
Solving for [tex]y_2[/tex]
[tex]\frac{-19+y_2}{2}=-18[/tex]
Multiplying both sides by 2.
[tex]\frac{-19+y_2}{2}\times 2=-18\times 2[/tex]
[tex]-19+y_2=-36[/tex]
Adding both sides by 19.
[tex]-19+y_2+19=-36+19[/tex]
∴ [tex]y_2=-17[/tex]
Thus co-ordinates of point N is (-24,-17)