Respuesta :

Answer:

Co-ordinates of endpoint is  (-24,-17)

Step-by-step explanation:

The question should be given as :

Find the coordinates of the other endpoint of the segment, given its midpoint (-19,-18) and one endpoint (-14,-19).

Step-by-step explanation:

Given point:

Endpoint (-14,-19)

Mid-point of segment  (-19,-18)

Let endpoint have co-ordinates [tex](x_2,y_2)[/tex]

Using midpoint formula:

[tex]M=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

Where [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are co-ordinates of the endpoint of the segment.

Plugging in values to find the midpoint of segment.

[tex]M=(\frac{-14+x_2}{2},\frac{-19+y_2}{2})[/tex]

We know [tex]M(-19,-18)[/tex]

So, we have

[tex](-19,-18)=(\frac{-14+x_2}{2},\frac{-19+y_2}{2})[/tex]

Solving for [tex]x_2[/tex]  

[tex]\frac{-14+x_2}{2}=-19[/tex]

Multiplying both sides by 2.

[tex]\frac{-14+x_2}{2}\times 2=-19\times 2[/tex]

[tex]-14+x_2=-38[/tex]

Adding both sides by 14.

[tex]-14+x_2+14=-38+14[/tex]

∴ [tex]x_2=-24[/tex]

Solving for [tex]y_2[/tex]  

[tex]\frac{-19+y_2}{2}=-18[/tex]

Multiplying both sides by 2.

[tex]\frac{-19+y_2}{2}\times 2=-18\times 2[/tex]

[tex]-19+y_2=-36[/tex]

Adding both sides by 19.

[tex]-19+y_2+19=-36+19[/tex]

∴ [tex]y_2=-17[/tex]

Thus co-ordinates of point N is (-24,-17)

ACCESS MORE