Option B
The zeros of the polynomial function are x = 0 , x = 6, x = -1
Solution:
Given function is:
[tex]f(x) = x^3 -5x^2 - 6x[/tex]
To find: zeros of the polynomial function
To find the zeros of polynomial function, set the function equal to zero and then solve for x.
[tex]x^3 -5x^2 - 6x = 0[/tex]
Taking "x" as common term, we get
[tex]x(x^2 - 5x - 6) = 0[/tex]
Equating to zero,
[tex]x = 0 \text{ and } x^2 - 5x - 6 = 0[/tex]
So one of the zeros of polynomial is x = 0
Let us solve [tex]x^2 - 5x - 6 = 0[/tex] to find other zeros
Let us solve using quadratic formula,
[tex]\text {For a quadratic equation } a x^{2}+b x+c=0, \text { where } a \neq 0\\\\x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}[/tex]
Using the above formula,
[tex]\text{ for } x^2 - 5x - 6 = 0 \text{ we have } a = 1 ; b = -5 ; c = -6[/tex]
[tex]\text{ The discriminant } b^2 - 4ac > 0 , \text{ so, there are two real roots }[/tex]
Substituting the values of a, b, c in above formula,
[tex]x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(1)(-6)}}{2(1)}\\\\x=\frac{5 \pm \sqrt{25+24}}{2}=\frac{5 \pm \sqrt{49}}{2}\\\\x=\frac{5 \pm 7}{2}\\\\x=\frac{5+7}{2} \text{ or } x=\frac{5-7}{2}\\\\x=\frac{12}{2} \text{ or } x=\frac{-2}{2}\\\\x=6 \text{ or } x=-1[/tex]
Thus the zeros of the polynomial function are x = 0 , x = 6, x = -1