Respuesta :

Answer:

[tex]\frac{1}{2}\sqrt{2+\sqrt{3}}[/tex]

Step-by-step explanation:

we know that

An half-angle identity is equal to

[tex]sin(\frac{\theta}{2})=(+/-)\sqrt{\frac{1-cos(\theta)}{2}}[/tex]

we have

[tex]sin(\frac{5\pi}{12})[/tex]

The angle [tex]\frac{5\pi}{12}=75^o[/tex]  ----> belong to the First Quadrant, so the value of the sine is positive

Let

[tex]\frac{\theta}{2}=\frac{5\pi}{12}[/tex]

so

[tex]{\theta=\frac{5\pi}{6}[/tex]

[tex]sin(\frac{5\pi}{12})=\sqrt{\frac{1-cos(\theta)}{2}}[/tex]

[tex]cos(\theta)=cos(\frac{5\pi}{6})=cos(150^o)=-\frac{\sqrt{3}}{2}[/tex]

substitute

[tex]sin(\frac{5\pi}{12})=\sqrt{\frac{1-(-\frac{\sqrt{3}}{2})}{2}}[/tex]

[tex]sin(\frac{5\pi}{12})=\sqrt{\frac{1+\frac{\sqrt{3}}{2}}{2}}[/tex]

[tex]sin(\frac{5\pi}{12})=\sqrt{\frac{2+\sqrt{3}}{4}[/tex]

[tex]sin(\frac{5\pi}{12})=\frac{1}{2}\sqrt{2+\sqrt{3}}[/tex]

ACCESS MORE