The researcher has limited resources. He sends 9 emails from a Latino name, and 14 emails from a non-Latino name. For the Latino names, the mean response time was 421 minutes (standard deviation of 82 minutes). For the non-Latino names, it was 366 minutes (standard deviation of 101 minutes). Calculate the standard error for the difference in means.

Respuesta :

Answer: 38.41 minutes

Step-by-step explanation:

The standard error for the difference in means is given by :-

[tex]SE.=\sqrt{\dfrac{\sigma_1^2}{n_1}+\dfrac{\sigma^2_2}{n_2}}[/tex]

where , [tex]\sigma_1[/tex] = Standard deviation for sample 1.

[tex]n_1[/tex]= Size of sample 1.

[tex]\sigma_2[/tex] = Standard deviation for sample 2.

[tex]n_2[/tex]= Size of sample 2.

Let the sample of Latino name is first and non -Latino is second.

As per given , we have

[tex]\sigma_1=82[/tex]

[tex]n_1=9[/tex]

[tex]\sigma_2=101[/tex]

[tex]n_2=14[/tex]

The standard error for the difference in means will be :

[tex]SE.=\sqrt{\dfrac{(82)^2}{9}+\dfrac{(101)^2}{14}}[/tex]

[tex]SE.=\sqrt{\dfrac{6724}{9}+\dfrac{10201}{14}}[/tex]

[tex]SE.=\sqrt{747.111111111+728.642857143}[/tex]

[tex]SE.=\sqrt{1475.75396825}=38.4155433158\approx38.41[/tex]

Hence, the standard error for the difference in means =38.41 minutes

Otras preguntas