Answer:
So the correct option is C ) 58 units.
Also If we require Distance then l(AC) = √58 = 7.615 units
Step-by-step explanation:
Let the Points be
point A( x₁ , y₁) ≡ ( -2 , 1)
point C( x₂ , y₂) ≡ (5 , -2)
To Find:
d(AC) = ?
Solution:
By Applying the Pythagorean Theorem to find the distance between points A and C we get
[tex]l(AC) = \sqrt{((x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2} )}[/tex]
Substituting A( x₁ , y₁) ≡ ( -2 , 1) and C( x₂ , y₂) ≡ (5 , -2) we get
[tex]l(AC) = \sqrt{((5-{(-2}))^{2}+(-2-1)^{2} )}\\\\l(AC) = \sqrt{(5+2)^{2}+(-3)^{2}}\\\\l(AC) = \sqrt{(49+9)}\\\\l(AC) = \sqrt{58}\\\\OR\\l(AC)^{2} = 58\ units[/tex]
So the correct option is C ) 58 units.
If we require Distance then l(AC) = √58 = 7.615 units