Answer:
a) 0.8413
b) 421
c) [tex]P_{95} = 189.675[/tex]
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 165
Standard Deviation, σ = 15
We are given that the distribution of IQ examination scores is a bell shaped distribution that is a normal distribution.
Formula:
[tex]z_{score} = \displaystyle\frac{x-\mu}{\sigma}[/tex]
a) P(IQ scores at most 180)
P(x < 180)
[tex]P( x < 180) = P( z < \displaystyle\frac{180 - 165}{15}) = P(z < 1)[/tex]
Calculation the value from standard normal z table, we have,
[tex]P(x < 180) = 0.8413 = 84.13\%[/tex]
b) Number of the members of the club have IQ scores at most 180
n = 500
[tex]\text{Members} = n\times \text{P(IQ scores at most 180)}\\= 500\times 0.8413\\=420.65 \approc 421[/tex]
c) P(X< x) = 0.95
We have to find the value of x such that the probability is 0.95
[tex]P( X < x) = P( z < \displaystyle\frac{x - 165}{15})=0.95[/tex]
Calculation the value from standard normal z table, we have,
[tex]P(z < 1.645) = 0.95[/tex]
[tex]\displaystyle\frac{x - 165}{15} = 1.645\\\\x = 189.675[/tex]
[tex]P_{95} = 189.675[/tex]