Respuesta :

Answer:

[tex]a_{n}[/tex] = 96[tex](-1.5)^{n-1}[/tex]

Step-by-step explanation:

The n th term of a geometric sequence is

[tex]a_{n}[/tex] = a[tex](r)^{n-1}[/tex]

where a is the first term and r the common ratio.

Both values have to be found.

Using

a₂ = - 144, then

ar = - 144 → (1)

a₅ = 486, then

a[tex]r^{4}[/tex] = 486 → (2)

Divide (2) by (1)

[tex]\frac{ar^4}{ar}[/tex] = [tex]\frac{486}{-144}[/tex]

r³ = - 3.375 ( take the cube root of both sides )

r = - 1.5

Substitute r = - 1.5 into (1)

- 1.5a = - 144 ( divide both sides by - 1.5 )

a = 96

Hence explicit formula is

[tex]a_{n}[/tex] = 96[tex](-1.5)^{n-1}[/tex]

ACCESS MORE