Answer:
90% Confidence interval: (8463.1,8528.9)
Step-by-step explanation:
We are given the following in the question:
Sample mean, [tex]\bar{x}[/tex] = 8496 lb
Sample size, n = 125
Alpha, α = 0.10
Population standard deviation, σ = 100
90% Confidence interval:
[tex]\mu \pm z_{critical}\frac{\sigma}{\sqrt{n}}[/tex]
Putting the values, we get,
[tex]z_{critical}\text{ at}~\alpha_{0.10} = 1.645[/tex]
[tex]8496 \pm 1.645(\frac{100}{\sqrt{25}} ) = 8496 \pm 32.9 = (8463.1,8528.9)[/tex]